DAV PUBLIC SCHOOLS, ODISHA ZONE

PERIODIC ASSESSMENT –II(2023-24) SUBJECT – SCIENCE(086) CLASS - IX MARKING SCHEME

Q No.	Value Points	Marks Alloted	Total mark	Page No. of NCERT TEXT Book
1.	(c) 625 m	1	1	110
2.	(a) Zero	1	1	101
3.	(b)	1	1	121
4.	(b) m	1	1	NCERT EXEMPLAR
5.	(d) all the above	1	1	122
6.	(c) Liquid C	1	1	141
7.	(b) 351 K	1	1	6
8.	(c) (i), (iii) and (iv)	1	1	NCERT EXEMPLAR
9.	(a) They are homogeneous mixtures and classified as metallic alloys.	1	1	15
10.	(c) corrosion and it is a chemical change	1	1	24
11.	(c) Atoms of a given element are not identical in mass and chemical properties.	1	1	32
12.	(d) 32g	1	1	31
13.	(a) raisins in beaker A were more swollen than those in beaker B	1	1	60
14.	(b) Sclerenchyma	1	1	71
15.	(c) X- Epidermal cell Y- Guard cell	1	1	71
16.	(c) remain at the same position	1	1	NCERT EXEMPLAR
17.	(c) Assertion is true but the Reason is false.	1	1	120
18.	(c) Assertion is true but the Reason is false.	1	1	7
19.	(a) Both the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion.	1	1	18
20.	(c) Assertion is true but the Reason is false.	1	1	59
21.	 (a) The rider tends to fall forward due to inertia of motion of upper part of his body. (b) It is difficult to hold hose ejecting large amount of water because of its tendency to move backward due to equal reaction force applied by stream of water on the hose. 	1 1	2	118,122
22.	3g of Hydrogen react completely with 14g of Nitrogen. 9g of Hydrogen react completely with $\frac{14}{3} \times 9 = 42g$ of Nitrogen. Law of constant proportion which states in a chemical substance the elements are always present in definite proportions by mass.	1	2	32

23.	(a) Lysosome destroys the foreign materials that enters into the cell by its hydrolytic enzymes.(b) SER plays a crucial role in detoxifying many poisons and drugs.	1 1	2	64
24.	X – Dilute hydrochloric acid. The egg shrinks/exosmosis	1 1	2	60
25.	 (a) Part-A – cell wall Part-B- vacuole (b) Function of part-A:- To withstand very dilute (hypotonic) external media without bursting. Function of part-B:- Provide turgidity and rigidity to the cell. Storage of amino acids, sugars, organic acids, proteins etc. (Any one) OR (a) Endocytosis The flexibility of the cell membrane enables the cell to engulf in food and other material from its external environment. This process is called Endocytosis. (b)because of rigid cell wall 	1/2 1/2 1/2 1/2 1/2 OR 1/2 1 1/2	2	60,61,65
26.	A – Epidermis; B – Stomatal pore Massive amounts of gaseous exchange takes place in the leaves through these pores for the purpose of photosynthesis. Transpiration. (Any One). OR Chlorenchyma-helps in photosynthesis Aerenchyma-buoyancy to aquatic plants	$\frac{1}{2} + \frac{1}{2}$ 1 OR 1 1	2	71
27.	(a) m = 10 g = 1/100 kg, u = 10 ³ m / s, v = 0, s = 5/100 m $v^2 - u^2 = 2as$ $0 - (10^3)^2 = 2.a.5/100$ $a = -10^7 ms^{-2}$ F = m. $a = -10^5 N$ (b) v = u + at $0 = 10^3 - 10^7 t$ $10^7 t = 10^3$ $t = 10^3/10^7 = 10^{-4} s$ Given, mass of the bullet (m) = 10g (or 0.01 kg) (u) = 150 m/s (v) = 0 m/s Time period (t) = 0.03 s v = u + at 0 = 150 + a (0.03) $a = -5000 ms^{-2}$ $v^2 = u^2 + 2as$ $0 = 150^2 + 2 x (-5000)s$ s = 2.25 m As per the second law of motion, F = ma F = 0.01kg × (-5000 ms^{-2}) F = -50 N	1/2 1 1/2 1 OR 1/2 1/2 1 1	3	NCERT EXEMPLAR 129

28.	(a) when an object is partially or fully immersed in a fluid,					
	it experiences an upthrust or upward force that is equal					
	to the weight of the fluid displaced by it.					141 142
	(b) Hydrometer is used to find the density of water.			$\frac{1}{2} + \frac{1}{2}$		141,142
	Lactometer is used to measure the purity of a given				3	NCEDT
	sample of milk.(any two relev	ant answer)				Exampler
	(c) The weight of the liquid di	splaced by the object is equal t	o the	1		Exemptat
	apparent loss of weight of the	solid = $2N$				
29.	(a) (a) Given that $W_e = mg_e = 39$	92 N				
	$W_{\rm p} = mg_{\rm p}$					
	$W_p - M_{g_p}$ $W_p / W_e = g_p / g_e - (1)$					
	We know $g_e = GM_e/R_e^2$					
	According to question					
	$g_{p} = (G \times 2M_{e})^{2} = GM_{e}/8I$	$R_{e}^{2} = 1/8(GM_{e}/R_{e}^{2})$		1		
	But $g_p = 1/8 g_e$ (2)					
	Using equation (2) in equation	(1)				137,139
	We get, $W_p/W_e = 1/8$					
	Or $W_{p} = W_{e}/8 = 392N/8 = 49 N$			1	2	
	p c				3	
	(b) pressure <u>thrust</u>			1/2		
	area					
	SI unit = pascal			1/2		
30.	(a)					
	Evaporation	Boiling		2		
	Evaporation usually occurs	Boiling usually occurs from				
	on the surface of the liquid.	the bulk of the medium.				
	The process of evaporation	The process of boiling is				
	is usually slower.	usually much quicker.				
	Evaporation cause cooling	Boiling don't cause cooling				
		effect				
	Evaporation occurs at any	Boiling occurs at a fixed				
	temperature below the	temperature				
	boiling point	temperature				
	(Any two)					
	(h) On a hot humid day due to	the heat our body starts sweat	ting for			
	the cooling mechanism i.e. by	evaporation and gets cooling e	offect	1		7.0
	But the air cannot hold any mo	ore water on a humid day and	incet.			7,9
	therefore the sweat or perspira	tion is seen				
	therefore the sweat of perspiration is seen.				3	
		OR				
				OR		
	(a)During the change of state the heat supplied is used to overcome		rcome			
	(h) a unig the charge of state the near supplies is used to overcome the intermolecular force of attraction hence the temperature remains constant.(b) Ice at 273K will have more cooling effect than water because ice					
				1		
	has extra energy in the form of latent heat of fusion. When ice melts, it takes extra energy from the surroundings to overcome this latent heat. The temperature of the surrounding gets lowered or					
			2			
	cooling is caused. Since water is in liquid state it will hardly take up energy from the surroundings.					

31.	(a) milk, coloured gemstone-colloid			
	tincture of iodine-true solution	1⁄2 X 4		
	soil in water-suspension		2	16,18
	(b)Dispersed phase- liquid	$\frac{1}{2} + \frac{1}{2}$	3	
	Dispersing medium- gas			
32.	(a) Two Similarities:	1		
	i. Both are found in eukaryotic cells.			
	ii. They have their own DNA and ribosomes.	I	2	- -
	(Any other relevant answer).		3	65
	(b) Viruses lack any membranes and hence do not show			
	characteristics of life until they enter a living body.	1		
33	A. Apical Meristem–Increases the length of the stem and the root.	1		
55.	B. Intercalary Meristem–Facilitate longitudinal growth of plant organ.	1	2	60
	Increases the length of the internode.		3	69
	C. Lateral Meristem – increases the girth of the stem or root.	1		
34.	(a) $F = Gm_1 m_2/r^2 = 200 N(1)$	1		
	$F_1 = Gm_1 m_2 / (r_1)^2 = 100N_{(2)}$			
	Dividing $eq(1)$ by $eq(2)$.			
	We get $(r_1)^2/r^2 = 200/100 = 2$			
	Or $r_1 = \sqrt{2} r$			
	(b) According to Newton's second law of motion for a given force	2		
	acceleration is inversely proportional to mass of an object.	2		
	Hence acceleration produced in case of the earth is negligible as mass is			
	much more in comparison to the mass of the apple. So we do not see the			
	earth moving towards the apple.			
	(c) Given data:			
	Initial velocity, $u = 40 \text{m/s}$			
	$g = 10 m/s^2$			
	Max height final velocity $= 0$			
	Consider third equation of motion			132,135,136
	$v^2 = u^2 - 2gh$ [negative as the object goes up]			
	$0 = (40)^2 - 2 \times 10 \times h$			
	$h = (40 \times 40) / 20$			
	Maximum height $h = 80m$	I		
	Total Distance = $h + h = 80m + 80m = 160m$		5	
	Total displacement = 0 as the final position of the stone coincides	1/2		
	OR	1/2		
	(a) i) $t = \frac{8s}{2} - 4s$	OR		
	$v = 0; a = -g = -9.8 \text{m/s}^2$			
	v = 0, a = -g = -9.0 m/s			136,134
	v = u + at, $0 = u - 0.8 \times 4$, -
	0 - u - 3.0 x 4			
	u = 59.211/8	1		
	(ii) $\sqrt{-u} = 2ai,$ or $0 = (20.2)^2 = 2\pi (0.8) \pi b$			
	of $0 - (39.2) = 2 \times (-9.8) \times 11$			
	n = /8.4 m	1		
	(111) at $t = 4s$, the ball is at maximum height.			
	5s - 4s = 1s			
	In the next 1s; $h = 0 + \frac{1}{2} \times 9.8 \times (1)^2 = 4.9 \text{ m}$	1		
	(from the top) or 73.5 m from the bottom.			
	(b) Importance			
	1. The force that binds us to the earth.	1		
	2. The motion of the moon around the earth.	1		
	(or any relevant point)			

35	a) Let the amount of Ammoniu	m Chloride be x	2		
55.	Δ mount of solution – (x	x + 120) g	2		
	$\frac{x}{x} = \frac{100}{x}$	(+ 120) g			
	$\% = \frac{1}{x+120} \times 100$				
	$\Rightarrow 15 = \frac{x}{100} \times 100$				
	x+120 r = 21.17 g				
	-3x - 21.17g (b)(i) Solid potassium chloride	will separate out	1		
	(ii) Iron sulphide will be formed		l		
	(ii) from surpline with be formed	$t = 0^{\circ}$ C hassing it is not number water. At	l		
	(c) Sample B will not neeze a	a o C because a is not pure water. At	1/2+1/2		
	1 atm, the boiling point of pure	water is 100°C and the freezing			
	point of pure water is 0°C.				16,17,18,25
		OR	OR		
	(a) At 323 K, salt Y has the hig	hest solubility in water while salt Z	1		NCERT
	has the lowest solubility.				EXEMPLAR
	(b) By definition of saturated so	olution,	2	5	
	100 g of water at 323 K contain	a salt = 40 g			
	125 g of water at 323 K contain	a salt = (40g/100g) x (125 g) = 50 g			
	\therefore Mass of salt to be added to m	ake the solution again saturated =			
	(50 - 40) = 10 g	-			
	(c) At 290 K, mass of T require	ed to make a saturated solution in			
	200 g of water = $(25g/100g)$ x ((200 g) = 50 g	1		
	(d) A solution which temporari	v contains more solute than the	1		
	saturation level at a particular to	emperature is called a super saturated	1		
	solution	emperature is cance a super saturated	1		
36	(a) X- Mitosis		1/2		
50.	V -Meiosis		1/2		
	(b) Mejosis Chromosomes nu	$\frac{1}{2} + \frac{1}{2}$			
	(c) (i) When a red blood cell is	1			
	(c) (i) when a red blood cell is kept in concentrated same solution, it loses water due to exosmosis and shrinks.(ii) If plasma membrane of a cell breaks down, all the protoplasmic materials including cell organelles will come out of the cell				
					66
				5	
	resulting in their non-functionin	ig and hence death of the cell.	1		
	(iii) Cells of the Onion scale le	aves will get killed on boiling; hence	1		
	no plasmolysis will occur. If	herefore, there will be no effect of			
	putting sugar syrup over the lea	ves.			
27					
37.					
	Uniform linear motion	Uniform circular motion			
	1. Motion is along a straight	Motion is along a circular			
	path	path	1		
	2.Direction does not	Direction changes	1		
	change.	continuously			
	3. There is no accelerated .	It is an accelerated motion.			NCERT
	(any one difference)				PAGE
	(b) 1:1				101 110
	(c) $a = -6m/s^2, t = 2s, v =$	0 m/s		4	101,110
	$\mathbf{v} = \mathbf{u} + \mathbf{at}$		1		
	$0 = u + (-6 \ge 2)$				
	u = 12m/s.				
	$s = ut + \frac{1}{2} at^2$		1		
	s = 24 - 12 = 12 m				
			1		

	OR	OR		
	(c)Let distance of school be x km.			
	$t_1 = \frac{x}{30} h and t_2 = \frac{x}{25} h$	1		
	Total time = $t_1 + t_2 = \frac{x}{30} + \frac{x}{25} = \frac{11x}{150}$	1		
	Av speed for round trip = $\frac{1}{total time} = \frac{1}{11x/150}$			
	$=\frac{300}{11}=27.27$ km/h			
38.	a) Water hyacinth floats in water due to presence of large air cavities in the parenchyma tissue. These specialized parenchyma tissues are called aerenchyma.	1		
	b) Husk of coconut tree is sclerenchyma which is hard. Hence it is difficult to pull out the husk of a coconut tree.	1		
	c) Collenchyma Provides flexibility in plants. Also provides mechanical support.(Any one)	1 + 1	4	71
	OR		4	
	(c) Cells of meristematic tissue are very active, they have dense cytoplasm, thin cellulose walls and prominent nuclei. They lack	OR		
	vacuoles.	1 + 1		
	(Any two)			
39.	(a) beaker D			
	(b) slower in A than in C	1		
	(c) The rate of diffusion increases with the increase in temperature	1		
	as with increase in temperature kinetic energy increases ad particles	2		
	diffuse rapidly	2	4	23
	OR	OR	-	2,5
	(c)	1		
	i) Solid < liquid < gas	1		
	ii) Inter particle space, kinetic energy, intermolecular space	1		
	(any two)			
