	ANNEXURE –C		
	DAV PUBLIC SCHOOLS, ODISHA ZONE		
	HY : 2023-24		
	CLASS: XII , SUBJECT: CHEMISTRY		
	MARKING SCHEME(SET-1)		
QS TN N O	Value Points	Marks Allotte d	PAGE NO. OF NCER T /TEXT BOOK
1	b) $H_2O + C_4H_9OH$	1	45
2	$ (a) \qquad \stackrel{\texttt{(a)}}{[R]} \qquad \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1	84
3	c) lesser energy difference between 5f and 6d orbitals than		
	between 4f and 5d orbitals	1	311
4	a) But-3-en-2-ol	1	289
5	a) $0.005 \text{ mol} \text{L}^{-1} \text{s}^{-1}$		
6	c) Nearly same atomic size	1	213
7	c) becomes one-fourth	1	100
8	c) $8,000 \text{ cm}^{-1}$	1	252
9	c) 3	1	226
10	a) or d)1-Methylcyclohexene	1	206
11	a) $Cr > Mn > V > Ti$	1	221
12	c) phenol and acetone	1	332
13	b) Both A and R are true but R is not the correct explanation of A.	1	46
14	a) Both A and R are true and R is the correct explanation of A.	1	210
15	b) Both A and R are true but R is not the correct explanation of A.	1	101
16	b) Both A and R are true but R is not the correct explanation of A.	1	295
17	For hydrogen electrode, $H^+ + e^- \rightarrow \frac{1}{2}H_2$,	1/2	70
	Applying Nernst equation,		
	$E_{H^{+},\frac{1}{2}H_{2}} = E_{H^{+},\frac{1}{2}H_{2}}^{o} - \frac{0.0591}{n} \log \frac{1}{[H^{+}]}$	1/2	
	$= 0 - \frac{0.0591}{1} \log \frac{1}{10^{-10}}$	1/2	
	$\begin{cases} pri = 10 \\ \Rightarrow [H^+] = 10^{-10} M \end{cases}$ = -0.0591 × 10 = -0.591 V	1/2	

HY/CHEM-XII(MS)/SET-1

18	a) $6 \operatorname{Fe}^{2^+} + \operatorname{Cr}_2 \operatorname{O7}^{2^-} + 14 \operatorname{H}^+ \rightarrow 2 \operatorname{Cr}^{3^+} + 6 \operatorname{Fe}^{3^+} + 7 \operatorname{H}_2 \operatorname{O}^{3^+}$			1	226
	b) $2MnO_4^-+5C_2O_4^{2-}+16H^+\rightarrow 2Mn^{2+}+10CO_2+8H_2O$			1	
19	A= CH ₃ CH ₂ OH, B= CH ₃ CH ₂ F, C= CH ₃ CH ₃ , D= CH ₂ =CH ₂			½ x 4	299-
•				1/ 1/	310
20	a)			$\frac{1}{2} + \frac{1}{2}$	341
	compounds	Tests/reagents	observation		
	phenol	Neutral FeCl ₃ solution	Violet colour solution		
	ethanol		No such obs.		
	b)				
	()	Tosts/roogonts	observation		
	tart butyl alcohol	Lucos tost	Turbidity occurs	$\frac{1}{2} + \frac{1}{2}$	338
		(conc HCl+anh ZnCl-)	immediately	/ / _	
	n butul alaahal		No such obs		
21	a) The anthelmise of stamize	tion of a transition motal and	high because they have a large	1	210
21	a) The enthalpies of atomiza	tion of a transition metal are	high because they have a large	1	218
	number of unpaired electr	ons resulting strong inter ato	mic metallic bonding.	1	
	b) Weak inter atomic metal	llic bonding due to absence	of unpaired electron.	1	
		OR			
	a) In Comparison to Fe ²⁺ ,	Cr ²⁺ is a stronger reducing	agent because in formation of	f 1	
	Cr^{3+} from Cr^{2+} changes	is from $d^4 \rightarrow d^3$. In d^3 elect	ronic configuration t _{2g} orbital	s I	
	are half filled . But in F	e^{2+} to Fe ³⁺ Changes is d ⁶ to	d ⁵		
	b) Atomic number (Z)=27, i	it is Co with configuration	3d ⁷ ,4s ²	1	
	In Co^{2+} , the configuration is $3d^{7}$. Now, Number of unpaired electrons =3			1	
	magnetic moment, $\mu = \sqrt{n(n+2)} = \sqrt{3(3+2)} = 3.87$ BM				
22	a) It states that "the partial	pressure of the gas in vapor	ur phase (p) is proportional to	1	46
	the mole fraction of the	gas (x) in the solution".			
	b) Since number of paricles decreases, hence van't Hoff factor (i) will decrease and			1	58
	freezing point of the solution will increase.				
	c) Molality is considered better for expressing the concentration as compared to		1	37	
	molarity because the molarity changes as volume of the solution changes with				
	temperature but molality	y does not.			
23	a)				94
	$Al_2O_3 + 6e$	$r \longrightarrow 2Al + 3O^{2-}$		1	
	6F	(2×27) g			
	To produce 54 g of Al,	, charge needed $= 6F$			
	(40g)				
	To produce 40 g of Al,	, charge needed = $\frac{(54g)}{(54g)}$	\times (6F) = 4.44F.		
	b) At anode=Br ₂ , at cath	ode=Cu		1/2 +1/2	87
	, 2,				
	c) Λ^{o} for NaBr is calculated b	by the following expression.		1	
	Λ° NaBr = λ° NaCl + λ° Kl	Br $-\lambda^0$ KCl			
	=126+152-150=128 Scm ² mol ⁻¹				83

HY/CHEM-XII(MS)/SET-1

24	a) [Co(NH ₃) ₅ (CO ₃)]Cl	1	249
	b) Heating removes the water molecule from the coordination sphere. As a result,		
	there is no crystal field splitting. Hence no colour is observed.	1	259
	c) $t_{2g}^{4} e_{g}^{2}$	1	
25	$k = \frac{2.303}{t} \log \frac{[R_0]}{[R]}, t_{1/2} = 3 \text{ hrs}, t = 8 \text{ hrs}, \frac{[R]}{[R_0]} = ?$	1⁄2	
	$t_{1/2} = 3.0 \text{ hrs}, \therefore k = \frac{0.693}{t_{1/2}} = \frac{0.693}{3} = 0.231 \text{ hr}^{-1}$	1/2	
	Hence, $0.231 = \frac{2.303}{8} \log \frac{[R_0]}{[R]}$	1⁄2	122
	or, $\log \frac{[R_0]}{[R]} = 0.8024$	1⁄2	
	or, $\frac{[R_0]}{[R]}$ = Antilog (0.8024) = 6.345	1⁄2	
	or, $\frac{[R]}{[R_0]} = \frac{1}{6.345} = 0.158$	1⁄2	
26	Any three		206
20	a)		200
	$NH_{2} \qquad N_{2}^{*}Cl^{-} \qquad Br \\ O \qquad (NaNO_{2} + HCl) \qquad O \qquad S^{*}C \qquad HBr \qquad O \qquad + N_{2}$	1	
	b) As all the hydrogen atoms are equivalent and replacement of any hydrogen will give the same product.	1	301
	$ \begin{array}{c} \Pi_{3} C \longrightarrow C \Pi_{3} \\ \end{array} $		
	 CH₃ (Neopentane) c) In haloarenes, NO₂ group present at o/p position results in the stabilisation of resulting carbanion by-R and - I effects and therefore increases the reactivity of haloarenes towards nucleophilic substitution reactions. 	1	313
	d) 2, 2-Bis (4-chlorophenyl)-1,1,1-trichloroethane	1	318
27	H^+	-	102
	a) $CH_3COOC_2H_5 + H_2O \rightarrow CH_3COOH + C_2H_5OH(any other suitable example)$ b)	1	
	$-\frac{dx}{dt} = k[A][B]^2$	1	
	c) 1	1	

28	$A = \pi r^2 = 3.14 \times (0.5)^2 \text{ cm}^2 = 0.785 \text{ cm}^2$		242
	$P \times A = E E \times 10^3 O \times 0.79 C = \frac{2}{3}$		
	ρ (resistivity) = $\frac{R \times A}{l} = \frac{5.55 \times 10 \ \Omega \times 0.785 \text{ cm}}{50 \text{ cm}} = 87.135 \ \Omega \text{ cm}.$	1	
	$\kappa = \frac{1}{\rho} = \frac{1}{87.135 \Omega \mathrm{cm}} = 0.01148 \mathrm{S} \mathrm{cm}^{-1}$	1	
	$\Lambda_m = \frac{\kappa \times 1000}{M} = \frac{0.01148 \times 1000}{0.05 M} = 229.6 \text{ S cm}^2 \text{ mol}^{-1}$	1	
29	a) inversion of configuration	1	171-
	b) OMe + HI $+ CH_3I$	1	174
	c) But-2-ene		
	H ₃ C H	1+1	
	$H_3C \longrightarrow CH_2 \longrightarrow CH_3 \xrightarrow{\text{alc KOII}} A$		
	OR		
	a) 1-Bromopentane will be more reactive as it least crowded for an $S_N 2$ reaction.	1	
30	a)	1	88,89
	The overall reaction is		
	$Pb(s) + PbOo(s) + 4H^{+}(ag) + 2SO_{4}^{2-}(ag) \longrightarrow 2PbSO_{4}(s) + 2HoO(l)$	1	
	OR	1	
	Due to the porous casing, a substance in the cell leaks out, corrodes the metal and the lifetime of the cell is reduced. On the other hand, the mercury cell does not	1	
	b) The galvanic cells in which the energy of combustion of fuels is directly converted into electrical energy are called fuel cells. One of the reactants is fuel such as hydrogen or methanol. The reactants are not placed within the cell but they are continuously supplied to the electrodes from the reservoir.	1⁄2	
	Advantages High efficiency, non polluting (any one)		
	c) $E_{\text{out}}^{0} = E_{\text{out}}^{0} - E_{\text{out}}^{0} = E_{\text{out}}^{0} - E_{\text{out}}^{2} = 0.344 - (-0.76) = 1.104 \text{ V}$	1⁄2	
	cen caulode anode Ag Zn	1	
	$\Delta G^{0} = -nF E_{cell}^{0} = -2 \times 96500 \times 1.104 = -213072 \text{ J} = -213 \text{ kJ}$	1	
31	a) i) The bonds between chloroform molecules and molecules of acetone are dipole- dipole interactions but on mixing, the chloroform and acetone molecules, they start forming hydrogen bonds which are stronger bonds resulting in the release of energy. This gives rise to an increase in temperature.	1	43,45, 54
	ii) To avoid bends, as well as, the toxic effects of high concentrations of nitrogen	1	
	HY/CHEM-XII(MS)/SET-1	Page 4 of	7

	in the blood, the tanks used by scuba divers are filled with air diluted with		
	helium.	1	
	can be measured at room temperature (any other suitable reason)	1	
	b) $K_{\rm f} \times W_{\rm B} \times 1000$		
	$M_{\rm B} = \frac{\Delta T_{\rm f} \times W_{\rm A}}{\Delta T_{\rm f} \times W_{\rm A}}$	1/2	
	$M_{\rm B} = \frac{3.83 \mathrm{K kg mol^{-1} \times 2.56 \times 1000 g kg^{-1}}}{100 g \times 0.383 \mathrm{K}} = 256 \mathrm{g mol^{-1}}$		
	100g ~ 0.565 K		
	Now, molecular mass of $S_x = x \times 32 = 256$	1/2	
	$x = \frac{256}{22} = 8$		
	32	1/2	
	Therefore, formula of sulphur = S_{0}	1/-	
	Therefore, formali of Sulphur 55	72	
	OR		51,54
	a) i) Beaker 1 :Hypotonic solution, Beaker 2 :Hypertonic solution	1/2+1/2	- ,-
	ii)In beaker 3 the size of potato cube remains the same because of isotonic	1	
	solution which has the same concentration of solutes as that of potato cells. So		
	water is neither lost or gained by the potato cells.		
	b) $\Delta T_f = 0 - (-0.068) = 0.068 K$		
$\Delta T_{f} = i \times K_{f} \times m$			
	$0.068 = i \times 1.86 \times 0.01$	72	
	So, i=3.6559	1/2	
	Again, $\alpha = \frac{i-1}{i}$		
	for $A[C]_2 \Rightarrow A[^{3+}+3C[^{-}: n=1+3=4]$		
	3.6559-1	1/	
	$\alpha = \frac{1}{4-1} = 0.8833$	1/2	
	% of dissociation = 88.33 $%$		
	c) The freezing point of water decreases, due to which the snow on the road starts to	1	
	melt and clears the road.		
32	Any five:		244,
	a) Hybridization: d ² sp ³ , Magnetic character: Diamagnetic	1/2+1/2	249,
	b) $[Cr(H_2O)_5Cl]Cl_2.H_2O$	1	252
	c) No, ionization isomers are possible by exchange of ligand with counter ion only	1/2+1/2	
	and not by exchange of central metal ion.		
	d) In both $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$, Ni is in +2 oxidation state with	1	
	configuration $3d^{\circ}$ and it contains two unpaired electrons. In $[NiCl_4]^{2-}$ due to	1	
	presence of weak ligand Cl^- no pairing takes place and hence it is paramagnetic		
	whereas in $[Ni(CN)_4]^{2-}$, CN^- is a strong field ligand and pairing occurs and		
L	1		

ii) $CH_3 - CH = CH_2 + (H - BH_2)_2 \longrightarrow CH_3 - CH - CH_2$		
Propene Diborane H BH2	1	
СН3-СН=СН2	1	
$(CH_3-CH_2-CH_2)_3B \leftarrow CH_3-CH_2-CH_2-CH_2)_2BH$		
н20 зн202, он		
$3CH_3 - CH_2 - CH_2 - OH + B(OH)_3$		
Propan-1-ol		
b)Ethoxyethane		
Step 1	1⁄2	
$CH_3-CH_2-\dot{\mathbf{O}}-\mathbf{H}+\mathbf{H}^+$ \longrightarrow $CH_3-CH_2^{\pm}\dot{\mathbf{O}}-\mathbf{H}$		
Step 2	1/2	
$CH_{3}CH_{2} - \bigcup_{H}^{\bullet} + CH_{3} - CH_{2} \stackrel{\bullet}{\square} + CH_{3}CH_{2} - \bigcup_{H}^{\bullet} - CH_{3}CH_{2} - \bigcup_{H}^{\bullet} - CH_{2}CH_{3} + H_{2}O$	1	
Step 3		
$CH_3CH_2 \xrightarrow{\bullet} O - CH_2CH_3 \longrightarrow CH_3CH_2 - O - CH_2CH_3 + H^+$ H	1	

HY/CHEM-XII(MS)/SET-1