ANNEXURE-C

DAV PUBLIC SCHOOLS, ODISHA, ZONE PERIODIC ASSESSMENT – II (2023 – 24)

MARKING SCHEME

OES		Marke	
	VALUE POINTS	Allotted	NCERT/TEST
NO.		Anotteu	BOOK
1	(a) 420	1 mark	P-2
2	$(C)\frac{x^2}{2} - \frac{x}{2} - 6$	1 mark	p-21
3	b. Any real value other than -2	1 mark	p-36
4	(c) intersecting or coincident	1 mark	p-29
5	(b) 30°	1 mark	p-121
6	(a) 3 cm	1 mark	p-147
7	c) 1/6	1 mark	p-207
8	d) 231 cm ²	1 mark	p-197
9	d) PA=4 cm	1 mark	p-149
10	c) $\frac{3}{8}$	1 mark	p-210
11	d) 4 cm	1 mark	p-84
12	a) 7 cm	1 mark	p-158
13	(b) similar	1 mark	p-78
14	c)3	1 mark	p-181
15	(c) 1	1 mark	p-127
16	b) 1	1 mark	p-127
17	d) 132 cm	1 mark	p-197
18	(c) $3\text{median} = 2\text{mean} + \text{mode}$	1 mark	p-155
19	(c) A is true but R is false	1 mark	p-7
20	a)Both A and B are true and R is the correct explanation of A	1 mark	p-21
	SECTION-B		
21	PQ RS [Given]		p-91
	$\angle P = \angle S$ [Pair of alternate angles]	1 mark	-
	and $\angle Q = \angle R$ [Pair of alternate angles]		
	Also, $\angle POQ = \angle SOR [Vertically opposite angles]$	1 mark	
22	$AP = AS \dots(i)$ [tangents from A]	1 mark	n-152
	$BP = BQ \dots (ii) [tangents from B]$		p-132
	$CR = CQ \dots (iii)$ [tangents from C]		
	$DR = DS \dots (1v)$ [tangents from D] Therefore $AB + CD = (AP + BP) + (CP + DP)$		
	= (AS + BQ) + (CQ + DS)	1 mark	
	= (AS + DS) + (BQ + CQ)	THIGH	
00	= (AD + BC).	1	107
23	SINA=4/3, COS A=3/5 and Tan A=4/3 cos&+tan&=29/15	1 mark	p-127
	Or		

24	$\frac{\sin 30^{0} + 2\cos^{2} 45^{0} + \tan^{2} 60^{0}}{\frac{1}{2}\cot 45^{0} + \cos^{2} 30^{0} + \tan^{2} 45^{0}} = \frac{\frac{1}{2} + 1 + 3}{\frac{1}{2} + \frac{3}{4} + 1} = 2$	1+1 Marks	- 215
24	P=3/15	1 mark	p-215
	Or = -2/52	2 mark	
25	$\frac{4\sin\theta - \cos\theta}{4\sin\theta + \cos\theta} = \frac{4x^3/4 - 1}{4x^3/4 + 1} = \frac{2}{4}$	1 mark	p-127
		1 mark	
	SECTION-C		
26	The time of their meeting is the LCM of 18 and 12 in minutes.	1 mark	р-б
	Prime factorization of $18=2\times3\times3$		
	Prime factorization of $12=2\times2\times3$	1 mark	
	Hence, LCM of 18, 12=2×3×3×2=36	1 mark	
	Sonia and Ravi meet after 36 minutes.	I Mark	
27	$x^{2}-6x+5 = x^{2}-5x-x+5$ =(x-5)(x-1)=0	1 mark 1 mark	p-21
	X=5 Or 1	1 marks	
	Or		
	Product = c/a		
28	a = 0 Let the digits at units and tens place of the given number be a and b		n-36
20	respectively.		p-30
	Its value is $10a + b$	1 mark	
	a + b = 9 (1) Also		
	9(10a + b) = 2(10b + a)	1 mark	
	$\delta a - D = 0$ (2) Solving, we get $a = 1, b = 8$		
	Hence our number is 18	1 mark	

29	$\frac{\tan A}{1 + \cos A} - \frac{\tan A}{1 - \cos A} = 2 \cdot \operatorname{cosec} A$		p-131
	$1 + \sec A$ $1 - \sec A$		
	L.H.S tan A tan A		
	$rac{1+\sec A}{1+\sec A} = rac{1+\cos A}{1-\sec A}$		
	$=rac{ an A(1- \sec A) - an A(1+ \sec A)}{1- \sec^2 A}$	1 mark	
	$=rac{ an A(1- \sec A -1 - \sec A)}{- an^2 A}$	1 mark	
	$=rac{-2 \sec A}{-\tan A}$		
	$=rac{2\cdot 1/\mathrm{cosA}}{\mathrm{sin}\mathrm{A}/\mathrm{cosA}}$	1 mark	
	$=\frac{2}{\sin A}$		
	=2 cosec A (RHS)		
	$OR_{sec\theta + tan\theta - 1}$		
	$=\frac{1}{\tan\theta-\sec\theta+1}$	1 mark	
	$= \frac{\sec \theta + \tan \theta - (\sec^2 \theta - \tan^2 \theta)}{\tan \theta - \sec \theta + 1} \{\because \sec^2 \theta - \tan^2 \theta = 1\}$		
	$= \frac{(\sec\theta + \tan\theta)[1 - (\sec\theta - \tan\theta)]}{\tan\theta - \sec\theta + 1}$	1 mark	
	$= \frac{(\sec\theta + \tan\theta)(1 - \sec\theta + \tan\theta)}{\tan\theta - \sec\theta + 1}$		
	$= \sec \theta + \tan \theta = \frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta}$	1 mark	
30	For correct figure	1 mark	p-149
	Correct proof	2 marks	
31	Modal Class=40-60	1 mark	p-187
	Correct value of Mode	1 mark	
32	Let us consider √2 is rational.		p-9
	$\sqrt{2} = p/q.$		-
	(where p and q are co-prime number and $q \neq 0$)		
	Squaring on both sides give, $2 - r^2/c^2$		
	$2 = \mu / q^{-1}$ $2q^{2} = n^{2}$		
	From this we can say that 2 divides p^2 so 2 will also divide p.	1 mark	
	So, 2 is one of the factor of p.	2	
	So we can write,		

	p = 2a Therefore, $2q^2 = (2a)^2$ $2q^2 = 4a^2$ $q^2 = 2a^2$ From this we can say that 2 divides q^2 so 2 will also divide q. So, 2 is one of the factor of q. As, we know p and q are co-prime so it cannot have common factor. But here a contradiction arise that 2 is factor of both p and q. So, by this we can say that $\sqrt{2}$ is not rational which means $\sqrt{2}$ is irrational. Sum of rational and irrational is irrational, and for correct	1 mark 1 mars 2 marks	
	proof.		
33	proof. Statement Figure, to prove, construction Correct proof or In ΔABC, AB EF ∴ ΔABC is similar to ΔEFC [AA similarity crirerion] ∴ $\frac{AB}{EF} = \frac{BC}{FC} \Rightarrow \frac{a}{h} = \frac{p}{FC}$ ∴ FC = $\frac{ph}{a}$ (1) In ΔBCD, EF DC ∴ ΔDCB is similar to ΔEFB [AA similarity crirerion] ∴ $\frac{DC}{EF} = \frac{BC}{FB} \Rightarrow \frac{b}{h} = \frac{p}{FB}$ ∴ FB = $\frac{ph}{b}$ (2) Adding (1) and (2), FC + FB = $\frac{ph}{a} + \frac{ph}{b}$ ∴ $p = ph\left[\frac{a+b}{ab}\right]$ ∴ $h = \frac{ab}{a+b}$	1 mark 1mark 3 mark 1.5 marks 1.5marks 2 mark	p-73 NCERT EXAMPLER

	40 - 50	у	40 + x + y		
	30 - 40	15	40 + x		
	20 - 30	20			
	20 - 30	20	25+ x		
	10 - 20	X	5+x		
			5	1 mark	
	0 - 10	5	5		
35	CI	F	C.f.	1 mark	p-198
	F	ixed charge= Rs. 15 Ac	dditional charge per day = Rs. 3		
	x = 15				
	x = 21 - 6	$y \ln (2) x + 2(3) = 21$			
	y = 3	f u in (2) $w \pm 2/2$ = 21			
	Subtract eqn (2) from (1) $2y = 6$				
	x + 2y = 21(2)				
	And additional charge after 5 days – KS. y ATQ $x + 4y = 27$ (1)				
	Let the fixed charge for first 3 days= Rs. x And additional charge after 3 days= Rs. v				
	(OR)				
	Cost of one ball = Rs. 50				
	Hence Cost of one	e bat = Rs. 500		1 mark	
	<i>y</i> = 50				
	2000 + y = 2050				
	4(500) + y = 2050	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>		1 mark	
	x = 500 Substiturevalued	pfxin(1) 4x + 1y = 20	50		
	-5x = -2500 x = 500				
	3x + 4100 - 8x = 16	500			
	Substitevalue of yin (2) $3x + 2(2050 - 4x) = 1600$				
	y = 2050 - 4x				
	from (1)4x + 1y =				
	3x + 2y = 1600	1 mark			
	ATO 4x + 1y = 205	1 mark	p-33		
34	Let cost of one ba	t be Rs <i>x</i> Let cost of on	he hall he Rsiv		- 22

	(c) $x^2 - 3\sqrt{3x+6}$	1 mark	
	OR	2 montro	
	+1 , - 1	2 marks	
37			p-207
	(a) 2/52	1 mark	
	(b) 12/52	1 marks	
	(c) 28/52	2 marks	
	Or	ZINdIKS	
	44/52		
38		1 mark	p-159
	(a) 36^{0}		1
	(b) 4.4cm	1 mark	
	(c)114cm		
	Or	2 marks	
	$15 4 cm^2$		

** *** ****